

Contents lists available at ScienceDirect

# **Chemical Engineering Journal**



journal homepage: www.elsevier.com/locate/cej

# Effect of pH on antibiotic resistance genes removal and bacterial nucleotides metabolism function in the wastewater by the combined ferrate and sulfite treatment

# Changwei Niu, Bing Wang, Zichao Wang<sup>\*</sup>, Huaibin Zhang

College of Environment Science, Liaoning University, No. 66 Chongshan Central Road, Shenyang, Liaoning Province 110036, China

| ARTICLE INFO                                                                                             | A B S T R A C T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Keywords:<br>Antibiotic resistance genes<br>Bacterial nucleotides metabolism<br>Ferrate<br>Sulfite<br>pH | The variations of the antibiotic resistance genes removal and the bacterial nucleotide metabolism function in the wastewater by the combined ferrate and sulfite treatment at different pH levels were investigated. The total DNA as well as the genes <i>sul2</i> , <i>sul3</i> and <i>int11</i> removal by the combined 10 mg/L ferrate and 28.5 mg/L sulfite treatment and the contributions of the sulfate radicals and the hydroxyl radicals produced by the reaction of ferrate with sulfite to the DNA removal decreased as the pH increase from 6.0 to 9.0. Bacterial nucleotide metabolism level changes affected the DNA removal, and the highest nucleotide degradation metabolism level and the lowest level of the nucleotide biosynthesis and salvage metabolism were found at pH 6.0. The reduction of the genes <i>sul2</i> , <i>sul3</i> and <i>int11</i> removal. This study provides novel insights into the antibiotic resistance genes removal by the combined ferrate and sulfite treatment at different pH levels. |

# 1. Introduction

Antibiotic resistance genes (ARGs) are a kind of emerging environmental pollutant that can persist in the environment for a long time, and are mainly derived from the response of bacteria to antibiotic pressure [1–3], and their long-term existence will severely threaten to public health [4]. World Health Organization has proclaimed that if effective action is not taken, more than 10<sup>7</sup> people will die from the infections of antibiotic resistant [5]. Wastewater treatment plants (WWTPs) receive antibiotics emissions from hospitals, residents and agriculture, and the presence of antibiotics in WWTPs can induce bacteria to produce ARGs [6]. This has led to WWTPs becoming a stockroom of ARGs, indicating that WWTPs will become an important shield to discourage the ARGs release into the aquatic environment [7]. Nevertheless, traditional WWTPs could not remove ARGs effectively [6]. Therefore, it is urgent to explore the method on the ARGs removal to avoid the excessive ARGs emissions from WWTPs into the aquatic environment.

The treatment system of combined ferrate ( $Fe^{6+}$ ) and sulfite ( $SO_3^2$ ) as a novel advanced oxidation process (AOP) has been widely used to remove some persistent emerging pollutants, as it is more environmental-friendliness, lower cost, and more stable production of free radicals than other AOPs (e.g., ozone/peroxide and ozone/ ultraviolet) [8,9]. The  $Fe^{6+}$  activation with  $SO_3^{2-}$  can rapidly undergo a single electron transfer reaction to generate pentavalent iron (Fe<sup>5+</sup>) and sulfite radical (SO $_3^{\bullet}$ ) (Eq. (1)), and the generated Fe<sup>5+</sup> and SO $_3^{\bullet}$  experience a series of chain reactions to further generate peroxymonosulfate radicals  $(SO_5^{\bullet-})$  and sulfate radicals  $(SO_4^{\bullet-})$ , hydroxyl radicals  $(HO_{\bullet})$  and hydrogen peroxide solution (H<sub>2</sub>O<sub>2</sub>) (Eqs. (2)-(5)) [10-12]. Subsequently,  $H_2O_2$  can reduce  $Fe^{6+}$  to tetravalent iron ( $Fe^{4+}$ ) (Eq. (6)). Among the above active oxides, the oxidation activities of  $SO_5^{\bullet}$  and  $SO_3^{\bullet}$ are relatively low, and the reaction rate of  ${\rm Fe}^{6+}$  with  $H_2O_2$  is much lower than that of  $Fe^{6+}$  with  $SO_3^{2-}$ , resulting in the negligible production of  $Fe^{4+}$  [13,14]. In addition, the changes in the  $SO_3^{2-}/Fe^{6+}$  molar ratio can also affect the generation of active oxidizing species in the combined  $Fe^{6+}/SO_3^{2-}$  system. Shao et al. [15] found that when the molar ratio of  $SO_3^2$ /Fe<sup>6+</sup> was in the range of 1.5 to 10.0, the production of Fe<sup>5+</sup> could be negligible due to the promotion of  $Fe^{5+}$  to  $SO_4^{\bullet-}/HO_{\bullet}$  transfer by a large amount of  $SO_3^2$ . The results suggest that  $Fe^{6+}$ ,  $SO_4^{\bullet}$  and  $HO_{\bullet}$  are always the main active oxidizing substances in the system of combined  $\mathrm{Fe}^{6+}$  and  $\mathrm{SO}_3^2$ . It is worth noting that the alkalinity condition was conducive to the conversion of  $SO_4^{\bullet}$  to HO $\bullet$  according to Eq. (4), while at acid conditions, the conversion of  $SO_4^{\bullet-}$  to HO• would be slowed (Eq. (7)) [7]. In addition, many studies found that  $SO_4^{\bullet}$  was a more selective oxidant than HO• [16,17], which would lead to the difference in the

https://doi.org/10.1016/j.cej.2023.148042

Received 25 September 2023; Received in revised form 20 November 2023; Accepted 10 December 2023 Available online 11 December 2023 1385-8947/© 2023 Elsevier B.V. All rights reserved.

<sup>\*</sup> Corresponding author. E-mail address: wangzichao10@sina.com (Z. Wang).

removal of tested pollutants in the treatment system of combined  $Fe^{6+}$  and  $SO_3^{2-}$  at different pH levels. Notably, the effect of pH on the ARGs removal in the wastewater by the combined  $Fe^{6+}$  and  $SO_3^{2-}$  treatment has been not evaluated.

$$\mathrm{Fe}^{6+} + \mathrm{SO}_3^{2-} \to \mathrm{Fe}^{5+} + \mathrm{SO}_3^{6-} \tag{1}$$

$$\mathrm{SO}_3^{\bullet-} + \mathrm{O}_2 \to \mathrm{SO}_5^{\bullet-} \tag{2}$$

$$SO_5^{\bullet-} + SO_3^{2-} \rightarrow SO_4^{\bullet-} + SO_4^{2-}$$
(3)

$$SO_4^{\bullet-} + OH^- \rightarrow SO_4^{2-} + HO_{\bullet}$$
 (4)

$$Fe^{5+} + H_2O \rightarrow Fe^{5+} + H_2O_2$$
 (5)

$$Fe^{6+} + H_2O_2 \rightarrow Fe^{4+} + O_2$$
 (6)

$$SO_4^{\bullet-} + H_2O \rightarrow SO_4^{2-} + HO\bullet + H^+$$
(7)

$$\mathrm{Fe}^{6+} + \mathrm{H}_{2}\mathrm{O} \to \mathrm{Fe}^{3+} + \mathrm{O}_{2} \uparrow \tag{8}$$

$$Fe^{3+} + OH^- \rightarrow Fe(OH)_3$$
 (9)

Bacterial nucleotide metabolism actively participates in the formation of ARGs [18], and many studies have reported that the changes in the levels of the bacterial nucleotide metabolism could affect the ARGs formation, abundance, and transfer, etc. [19-21]. Zhong et al. [19] investigated the relationship of the ARGs removal with the bacterial nucleotide metabolism during the biogas residues composting, and the results showed that the addition of the bioaugmentation in the composting process caused the increase in the average bacterial nucleotide metabolism level and the decrease of the ARGs abundance compared to the composting process without bioaugmentation. Huang et al. [20] explored the endogenous and exogenous regulations of anammox consortia in responding to lincomycin, and found that bacteria maintained the formation and transmission of ARGs by regulating the nucleotide metabolism. Wu et al. [21] estimated the regulating resistome and metabolome of anammox consortia at the non-antibiotic drug stress, and found that the bacterial metabolism was one of the key driving factors for the ARGs transfer in the anammox systems. Currently, the information on the effects of the bacterial nucleotide metabolism on ARGs mainly focuses on some biological treatment systems. However, few works have been carried out to evaluate the relationship of the ARGs removal in the wastewater treated by combined  $Fe^{6+}$  and  $SO_3^{2-}$  at different pH levels with the bacterial nucleotide metabolism changes.

This study took the genes *sul2*, *sul3* and *int11* which were common genes in some WWTPs [22,23] as the target genes, and mainly aimed to assess the effect of the pH change in the wastewater treatment system of combined  $Fe^{6+}$  and  $SO_3^{2-}$  on (a) the removal of the total DNA and the genes *sul2*, *sul3* and *int11*, (b) the key contributors to the DNA removal, (c) the levels of the bacterial oxidative stress, and (d) the relationship of the ARGs removal with the bacterial nucleotide metabolism function.

# 2. Materials and methods

### 2.1. Wastewater and experiments setup

Three 1 L conical flasks were used to carry out the experiments of DNA removal in the wastewater by the combined  $Fe^{6+}$  and  $SO_3^{2-}$  treatment, and the three flasks were named N1, N2 and N3, respectively. In order to make the raw wastewater (named N0) in N1, N2 and N3 have the same characteristics, the raw wastewater was concurrently taken from the same effluent in one sequencing batch reactor (SBR) managed for longer than 30 days at 15 mg/L sulfamethoxazole in our laboratory. The raw wastewater contained 97.17 mg/L chemical oxygen demand, 5.97 mg/L ammonia nitrogen, 0.97 mg/L nitrate nitrogen, 0.28 mg/L nitrite nitrogen and 18 mg/L sludge (estimated by mixed liquor suspended sludge (MLSS)), and the levels of dissolved oxygen and pH in the raw wastewater were 2.2 mg/L and 6.7, respectively. The SBR was

operated three cycles in one day, and one cycle included 3 min influent, 330 min aerobic step, 90 min anoxic step, 54 min deposition and 3 min drainage effluent. The initial sludge in the SBR was obtained from a municipal wastewater treatment plant aerobic tank (Shenyang City, China), and the MLSS value of the initial sludge in the SBR was about 2000 mg/L. The volume of raw wastewater in N1, N2 and N3 was all 0.5 L. Acetic acid/sodium acetate buffer (0.2 mol/L) was used to regulate the initial pH of the raw wastewater in N1 to 6.0, and borax buffer (0.05 mol/L) was used to regulate the initial pH of the raw wastewater in N2 and N3 to 7.0 and 9.0, respectively. Subsequently, 5 mg Fe<sup>6+</sup> and 14.25 mg SO<sub>3</sub><sup>2-</sup> were immediately added into every conical flask (N1, N2 and N3) to assess the DNA removal by the combined 10 mg/L  $Fe^{6+}$  and 28.5 mg/L  $SO_3^{2-}$  at different pH levels. After the addition of coupled Fe<sup>6+</sup> and  $SO_3^{2-}$  in the raw wastewater, the three conical flasks (N1, N2 and N3) at room temperature were instantly stirred at 600 revolutions per minute (rpm) for 2 min and then beat up at 100 rpm for 20 min and finally settled for 30 min.

# 2.2. Determining methods

The wastewater samples before and after the mixed  $Fe^{6+}/SO_3^2$ treatment were obtained to measure the levels of total DNA, sul2, sul3, intI1, catalase (CAT), superoxide dismutase (SOD), reactive oxygen species (ROS) and lactate dehydrogenase (LDH) in the wastewater, to analyze the key contributors to the DNA removal, and to evaluate the changes in the microbial community. The extraction and determination of DNA in the wastewater was carried out via Bacterial Genomic DNA Extraction Kit (Phygene Biotechnology Company, China) according to Zhao et al. [24], and the DNA concentration was evaluated by spectrophotometry according to Ni et al. [25]. DNA purity was determined by calculating the ratio of absorbance at 260 nm and 280 nm (A260/A280) [26], and the DNA purity in the study was 1.83. The levels of ROS, LDH, CAT and SOD in the wastewater were measured via ROS kit (Beyotime Biotechnology Company, China), LDH kit (Beijing Solarbio Science and Technology Company, China), CAT kit (Beijing Solarbio Science and Technology Company, China) and SOD kit (Beijing Labgic Technology Company, China), respectively. The contributions of SO<sub>4</sub><sup>•</sup> and HO• to the DNA removal were investigated by the scavengers of tert-butyl alcohol (TBA) and ethanol (EtOH) in accordance with Zhang et al. [27]. The wastewater samples used for the determination of the microbial community changes and the levels of genes sul2, sul3 and intl1 were intercepted by 0.22  $\mu m$  membranes, and then these filters were preserved at -80 °C for their analyses [25]. The microbial community variations as well as the levels of genes sul2, sul3 and int11 in the wastewater were evaluated by high-throughput sequencing and by quantitative polymerase chain reaction, respectively, in Personalbio Company (Shanghai, China). The primers for genes sul2, sul3 and intI1 are shown in table S1. The network analysis was carried out by the software of Gephi 9.0 according to Wang et al. [28]. Potential pathways and functions of nucleotide metabolism were predicted by the software of PICRUSt2 based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database (https://www.kegg.jp).

#### 3. Results and discussion

### 3.1. Effect of pH on the total DNA removal

Fig. 1a displays the changes in the total DNA concentration in the wastewater treated by jointly  $Fe^{6+}$  and  $SO_3^{2+}$  at different pH values. The total DNA concentration in the N0 (raw wastewater), N1 (treated wastewater at pH 6.0), N2 (treated wastewater at pH 7.0) and N3 (treated wastewater at pH 9.0) were 71, 8.5, 13.5 and 19 ng/µL, respectively. The total DNA removal efficiencies at pH 6.0, 7.0 and 9.0 were 87.84 %, 81.08 % and 72.97 %, respectively (Fig. 1b), suggesting that acid condition was more conducive to the total DNA removal by the joint treatment of  $Fe^{6+}$  and  $SO_3^{2-}$ . Alkalinity condition was conducive to



**Fig. 1.** Effect of pH on the total DNA concentration (a) and removal (b) in the wastewater treated jointly by  $Fe^{6+}$  and  $SO_3^{2-}$ . (c) Relative contributions of free radicals in the system of coupled  $Fe^{6+}/SO_3^{2-}$  to the total DNA removal from the wastewater at different pH levels. N0 was the raw wastewater, and the pH value of N0 was 6.7 (unadjusted). N1, N2 and N3 were the treated wastewater at different pH levels, and the pH values of N1, N2 and N3 were 6.0, 7.0 and 9.0, respectively.

the conversion of  $SO_4^{\bullet}$  to HO• according to Eq. (4) [12], while at acid condition, the  $SO_4^{\bullet-}$  to HO• conversion would be slowed (Eq. (7)). Previous studies found that the redox potentials of SO<sub>4</sub><sup>-</sup> and HO• at alkalinity condition were 2.5 V and 1.9 V, respectively, and they at acid condition were 3.1 V and 2.8 V, respectively [29]. Generally, the higher redox potential of free radicals suggests greater oxidizability for pollutants [30], and it has been confirmed that SO<sub>4</sub><sup>•</sup> has a stronger ability to oxidize DNA than HO• [31]. These findings suggested that the promotion of  $SO_4^{\bullet}$  to HO• conversion at the alkalinity condition could adversely affect the total DNA removal, while the slowed conversion of SO<sup>4</sup> to HO• at acid condition would positively affect the total DNA removal. This explained why the total DNA removal in the wastewater treated jointly by  $Fe^{6+}$  and  $SO_3^{2-}$  at pH 9.0 was the lowest among the three pH levels, while the highest removal of total DNA was found at pH 6.0. The result was similar to the previous studies in which the  $k_{obs}$  of the iopamidol degradation by  $SO_4^{\bullet}$  and HO• was the highest at pH 6.0 in the pH range from 6.0 to 9.0 [32]. The contributors of  $SO_4^{\bullet}$  and HO• to the total DNA removal in the wastewater were assessed through quenching experiments, and the results are shown in Fig. 1c. At pH 6.0, 7.0 and 9.0, the relative contribution rates of  $SO_4^{\bullet-}$  to the total DNA removal were 50.86 %, 43.41 % and 29.79 %, respectively, and those for HO• were 30.51 %, 28.30 % and 27.65 %, respectively. The contribution ratios of SO<sub>4</sub><sup>•</sup> to HO• at pH 6.0, 7.0 and 9.0 were 1.67, 1.53 and 1.08, respectively, which also confirmed the promotion of SO<sub>4</sub><sup>•</sup> to HO• conversion by the alkalinity condition and the slowed conversion of SO4 to HO• at acid condition.

It is worth noting that  $Fe^{6+}$  could also clear DNA through oxidizing guanine and thymine bases [25], and  $Fe^{6+}$  has a stronger oxidant

activity in acidic media [33]. The changes also resulted in the promotion of total DNA removal in an acid environment compared to neutral and alkaline conditions. Suyamud et al. [34] found similar results that Fe<sup>6+</sup> caused more significant reductions of antibiotic resistant bacteria at pH 6.0 than those at pH 7.5. Additionally, at alkalinity conditions, Fe<sup>6+</sup> could be converted to Fe(OH)<sub>3</sub> (Eqs. (8) and (9)), which would reduce the performance of total DNA removal by  $SO_4^{\bullet-}$ , HO• and Fe<sup>6+</sup>. The changes might also be one of the reasons that the total DNA removal at pH 6.0 was the highest among the pH 6.0, 7.0 and 9.0. Although  $Fe^{6+}$ , SO<sup>4</sup> and HO• are the primary active oxidizing species in the system of combined  $\rm Fe^{6+}$  and  $\rm SO_3^{2-}$  with an SO\_3^2-/Fe^{6+} molar ratio of 2.0 [15], there is little information on the quenching experiments of Fe<sup>6+</sup> in the combined  $Fe^{6+}/SO_3^{2-}$  system in the previous studies. As a result, the contributions of  $SO_4^{\bullet}$ , HO• and other factors to the total DNA removal were mainly analyzed. Interestingly, the relative contribution rates of HO• to the total DNA removal theoretically seemed to be decreased with the reduction of pH level according to the above conversion of SO4 to HO. at different pH, while the relative contribution rates of HO• to the total DNA removal were actually increased as the decline of pH value. The changes in the relative contribution rates of HO• to the total DNA removal suggested that the contribution of other factors (such as the oxidation of Fe<sup>6+</sup> as well as the adsorption of Fe(OH)<sub>3</sub>) to total DNA removal as the decrease of pH value reduced more significantly than HO•, resulting in the "false increase" in the relative contribution rates of HO• to the removal of total DNA as the decreased pH value. The contributions of other factors at pH 6.0, 7.0 and 9.0 were 18.63 %, 28.29 %and 42.56 %, respectively. The increasing contributions of other factors to the total DNA removal as the incremental pH level were related to the

easier formation of Fe(OH)<sub>3</sub> at the alkalinity condition, suggesting the role of Fe(OH)<sub>3</sub>-adsorption DNA was enhanced as the increasing pH level in the treatment of combined Fe<sup>6+</sup> and SO<sub>3</sub><sup>2-</sup>. Li et al. [35] found similar results in which the DNA removal was efficiently achieved by the coagulation of ferric chloride. At pH 6.0 and 7.0, SO<sub>4</sub><sup>4-</sup> contributed the highest DNA removal rate, while other factors had the relatively highest contribution to DNA removal at pH 9.0. The results confirmed that the effect of pH on the total DNA removal treated jointly by Fe<sup>6+</sup> and SO<sub>3</sub><sup>2-</sup> was achieved by affecting the production of free radicals.

# 3.2. Effect of pH on the removals of antibiotics resistance genes and mobile genetic element genes

Fig. 2 displays the effect of pH on the removals of genes *sul2*, *sul3* and *int11* in the wastewater treated jointly by Fe<sup>6+</sup> and SO<sub>3</sub><sup>2-</sup>. The *sul2* and *sul3* genes belong to ARGs, and the *int11* gene belongs to mobile genetic element genes. The gene copy numbers of *sul2*, *sul3* and *int11* in the raw wastewater (N0) from N1, N2 and N3 were 75507, 189,561 and 562,394 copies/mL, respectively (Fig. 2a). At pH 7.0, the removal efficiencies of genes *sul2*, *sul3* and *int11* were 55.58 %, 87.27 % and 80.46 %, respectively, and they at pH 9.0 were 50.69 %, 73.08 % and 77.69 %, respectively (Fig. 2b). The removal rate of genes *sul2*, *sul3* and *int11* at pH 7.0 were higher than those at pH 9.0. The second-order rate constant of



**Fig. 2.** Effect of pH on the removals of genes *sul2*, *sul3* and *intl1* in the wastewater treated jointly by  $Fe^{6+}$  and  $SO_3^{2-}$ . (a) was genes contents. (b) was genes removal changes. N0 was the raw wastewater, and the pH value of N0 was 6.7 (unadjusted). N1, N2 and N3 were the treated wastewater at different pH levels, and the pH values of N1, N2 and N3 were 6.0, 7.0 and 9.0, respectively.

HO• with purines and pyrimidines in DNA was lower than  $SO_4^{\bullet}$  [36], suggesting that SO<sub>4</sub><sup>•</sup> had higher abilities of breach to DNA than HO•. At alkalinity conditions, the SO<sub>4</sub><sup>•-</sup> to HO• conversion could be promoted (Eq. (4)), resulting in the removal rates of genes sul2, sul3 and intl1 at pH 7.0 were higher than at pH 9.0. At pH 6.0, the removal rate of genes sul2, sul3 and intl1 were 81.40 %, 92.67 % and 87.78 %, respectively, and they were the highest at the three treatment processes. The changes could be explained by the slow-moving conversion of SO<sub>4</sub><sup>-</sup> to HO• at the acid condition (Eq. (7)) resulting in more contents of  $SO_4^{\bullet-}$  in the treatment process at pH 6.0 than at pH 7.0 and 9.0. The gene sul3 removal at pH 6.0 and 7.0 was the highest among the genes of sul2, sul3 and intI1, while the highest removal rate of tested genes at pH 9.0 was gene intl1. Previous studies [36,37] found that ARGs in the wastewater could be directly inactivated via indirect damage of the DNA structure, and the reaction rate constant of pyrimidine with  $SO_4^{\bullet-}$  or HO• at some pathways (such as radical adduct formation, single electron transfer reactions or H atom abstraction) was higher than purine, meanwhile the reaction rate constant could be affected by the change in the structure of purine and pyrimidine. The results suggested that the difference in the genes *sul2*, sul3 and intI1 removals might be interrelated to the composition of purine and pyrimidine in their DNA fragments. Previous studies [38,39] found that gene sul3 had more pyrimidines than gene sul2, and pyrimidines were destroyed by SO<sub>4</sub><sup>•-</sup> and HO• more easily than purines. The results could explain why the removal rate of the gene sul3 was higher than the gene sul2. The composition of purine and pyrimidine in the gene intl1 has not been reported in the literature, and it needs to be further studied to better understand the effect of pH on the removals of DNA treated by the combined  $Fe^{6+}$  and  $SO_3^{2-}$ .

# 3.3. Effect of pH on the bacterial oxidative stress

Fig. 3 displays the effect of pH on the bacterial oxidative stress changes in the wastewater by the joint treatment of  $Fe^{6+}$  and  $SO_3^2$ . Compared to the raw wastewater (N0), the relative CAT level in the treated wastewater at pH 6.0 (N1), 7.0 (N2) and 9.0 (N3) decreased to 74.94 %, 78.59 % and 85.66 %, respectively, and the relative SOD content decreased to 83.67 %, 91.67 % and 94.34 %, respectively. CAT and SOD were antioxidant enzymes produced by bacteria, and they catalyzed the decomposition of strong oxidative matters [40,41]. When the cells were healthy, there would be a balanced relationship of oxidizing substances (such as ROS) with CAT and SOD [42]. If the balanced relationship was disrupted, the bacterial oxidative stress



**Fig. 3.** Effect of pH on the bacterial oxidative stress changes in the wastewater by the joint treatment of  $\text{Fe}^{6+}$  and  $\text{SO}_3^{2-}$ . N0 was the raw wastewater, and the pH value of N0 was 6.7 (unadjusted). N1, N2 and N3 were the treated wastewater at different pH levels, and the pH values of N1, N2 and N3 were 6.0, 7.0 and 9.0, respectively.

would be triggered [43]. The decreased degree of CAT and SOD relative levels in the treated wastewater at pH 6.0 was the highest among pH 6.0, 7.0 and 9.0. The changes were related to the less conversion of  $SO_4^{\bullet}$ (with a relatively high DNA removal ability) to HO• (with a relatively low DNA destruction ability) at acidic conditions compared to neutral and alkaline conditions (Eq. (7)). The decrease of CAT and SOD levels would cause bacterial oxidative stress changes, resulting in the excessive produce of ROS in cells [44]. The changes would increase the ROS levels in the wastewater. Compared to the raw wastewater, the relative ROS levels in the treated wastewater at pH 6.0, 7.0 and 9.0 were 164.27 %, 153.35 % and 148.91 %, respectively. The changes in the ROS levels at different pH values could be explained by the decrease of CAT and SOD levels as the reduction of pH value. The variations in the relative levels of CAT, SOD and ROS in the treated wastewater suggested that the joint treatment of  $Fe^{6+}$  and  $SO_3^{2-}$  at different pH levels disrupted the balance of bacterial oxidative stress, and the disruption at pH 6.0 was more significant. High ROS levels would increase the cell membrane permeability, and the high cell membrane permeability resulted in increasing LDH levels [45]. Compared to the raw wastewater, the relative LDH levels in the treated wastewater at pH 6.0, 7.0 and 9.0 were 148.56 %, 131.09 % and 113.61 %, respectively. The results suggested that the joint treatment of  $Fe^{6+}$  and  $SO_3^{2-}$  at different pH levels could increase the cell membrane permeability due to the bacterial oxidative stress imbalance, and the cell membrane permeability increased more obviously at pH 6.0.

# 3.4. Effect of pH on the nucleotide metabolic pathways in bacteria

As the DNA fragments in the wastewater were mainly derived from bacteria, the bacterial metabolic function changes would alter the DNA levels in the wastewater [46,47]. To understand the effects of bacterial metabolic function on the DNA levels in the wastewater by the combined Fe<sup>6+</sup> and SO<sub>3</sub><sup>2-</sup> treatment at different pH values, the levels in the metabolic pathways of bacteria and in the enzymes involved into these metabolic pathways were analyzed based on the KEGG database. 397 PICRUSt2 predicted metabolic pathways and 2000 enzymes were found in different samples, and the number of pathways and enzymes involved in the nucleotide metabolism were 36 and 44, respectively (Fig. 4). The numbers of metabolic pathways associated with the biosynthesis, degradation and salvage of nucleotide were 23, 8 and 5, respectively, and the numbers of enzymes involved into the nucleotide metabolic pathways were 29, 9 and 6, respectively. In the raw wastewater, the total relative abundance of metabolic pathways associated with the biosynthesis, degradation and salvage of nucleotide was 18.10 %, and the sum of the relative abundance of enzymes involved into nucleotide metabolism was 5.15 % (Fig. S1). They in the raw wastewater were lower than those in the treated wastewater, suggesting the raising DNA metabolism levels (especially increasing biosynthesis and salvage of nucleotide) were the protective response of bacteria to the DNA damaged by the combined  $Fe^{6+}$  and  $SO_3^{2-}$  at different pH levels. In addition, the results also suggested that the bacterial metabolism function changes could affect the DNA levels in the wastewater [46,47]. In comparison with the raw wastewater, the relative level of nucleotide biosynthesis pathways and enzymes involved into these metabolic pathways in the treated wastewater at different pH values were always higher, which could be interrelated to the response of bacteria to the DNA breakdown in the combined Fe<sup>6+</sup> and SO<sub>3</sub><sup>2-</sup> treatment system. When DNA was damaged or even cleared, bacteria produced DNA based on a bacterial self-protection mechanism [48]. This might cause more active nucleotide biosynthesis metabolism. In the treated wastewater at different pH levels, the most relative abundance of nucleotide biosynthesis pathways (14.24 %) and the highest relative levels of corresponding enzymes (4.68 %) were both found at pH 6.0, which was consistent with more DNA being broken down in the wastewater treated by the combined  $\mathrm{Fe}^{6+}$  and  $\mathrm{SO}_3^{2\text{-}}$  at pH 6.0. The relative abundance of nucleotide salvage pathways and enzymes involved into these metabolic

pathways in the raw wastewater were always lower than those in the treated wastewater at pH 6.0, while not always lower than those in the treated wastewater at pH 7.0 and 9.0. The changes were similar to the DNA removal by the combined  $Fe^{6+}$  and  $SO_3^{2-}$  treatment at different pH levels, suggesting that the DNA removal at pH 6.0 would cause more nucleotide fragments. The relative abundance of the nucleotide degradation pathways and the levels of the enzymes involved into these metabolic pathways in the treated wastewater at different pH levels were always lower than the raw wastewater, and those at pH 6.0 were the lowest. The changes might be related to the bacterial self-protection mechanism that allowed bacteria to reduce their own degradation of nucleotides to maintain the balance of DNA levels. The changes in the levels of pathways and enzymes involved in the bacterial nucleotide metabolism confirmed that the pH changes in the combined Fe<sup>6+</sup> and  $SO_3^{2-}$  treatment system had significant effects on the bacterial function on nucleotide metabolism, and the changes in the bacterial nucleotide metabolism function could affect the levels of DNA in the wastewater.

# 3.5. Effect of pH on the relationship of antibiotics resistance genes and mobile genetic element genes with bacterial nucleotide metabolism function

To understand further the effect of bacterial nucleotide metabolism function on the levels of DNA in the wastewater by the combined Fe<sup>6+</sup> and  $SO_3^{2-}$  treatment at different pH levels, the potential genes sul2, sul3 and intI1 hosts (genus level) were analyzed via a network analysis on the basis of the correlation of Pearson (|r| > 0.8) (Fig. 5a). There were 196 genera in the raw and treated wastewater at the different pH values, of which 25 genera accounted for about 90 % of total abundance in every sample (Fig. 5b). In the 25 genera, 7 genera were positive relations with genes sul2, sul3 and intI1, implying that these genera were the potential hosts of genes sul2, sul3 and intI1 [28]. The relative abundance of potential genes sul2, sul3 and intl1 hosts in the treated wastewater at pH 6.0, 7.0 and 9.0 were always lower than those in the raw wastewater, which might cause the decrease in the levels of genes sul2, sul3 and intI1 after the treatment. The cluster analysis of bacterial communities from the raw and treated wastewater showed that the bacterial community in the raw wastewater was similar to that in the treated wastewater at pH 9.0, and the microbial community in the treated wastewater at pH 7.0 and 6.0 had similarities. The results suggested that the combined Fe<sup>6+</sup> and  $SO_3^{2-}$  treatment had more significant effects on the bacterial community at pH 9.0 than those at pH 6.0 and 7.0, which might be one of the reasons that the DNA removal at pH 9.0 was lower than at pH 6.0 and 7.0.

The relationship of genes sul2, sul3 and intl1 with enzymes involved into the bacterial nucleotide metabolism pathways was analyzed via a network analysis on the basis of the Pearson correlation  $(|\mathbf{r}|>0.8)$ (Fig. 6a). The positive relation of genes sul2, sul3 and intl1 with enzymes involved into the metabolic pathways of nucleotide suggested that the inhibition of these enzymes metabolism might be one of the ways for the genes sul2, sul3 and intI1 removal, while the negative relations suggested a bacterial repair response to the genes sul2, sul3 and intl1 breach. Dihydroorotate dehydrogenase (quinone) (EC: 1.3.5.2) and guanine deaminase (EC: 3.5.4.3) were the enzymes involved into the pathways of pyrimidine biosynthesis and purine salvage, respectively, and these enzymes levels were positively related to the changes of genes sul2, sul3 and intI1 levels at different pH values. The results suggested that the inhibition of the dihydroorotate dehydrogenase (quinone) of pyrimidine biosynthesis and the guanine deaminase of purine salvage by the combined treatment of Fe<sup>6+</sup> and SO<sub>3</sub><sup>2-</sup> at different pH levels might be one of the ways for the removal of genes sul2, sul3 and intI1. The relative levels of dihydroorotate dehydrogenase (quinone) were always higher than guanine deaminase at different pH levels (Fig. 4b), suggesting that the pyrimidine biosynthesis was damaged by the combined treatment of  $Fe^{6+}$  and  $SO_3^{2-}$  more easily than purine salvage. In the raw wastewater, the sum of pyrimidine biosynthesis and salvage enzymes (the negative relationship with the changes of genes sul2, sul3 and intI1) relative levels

| S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Function description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                            |                                                                                                                                   |                                                                                      | e (%)                                                               | Metabolism pathways                        |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------|--|--|
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Superpathway of histidine, purine, an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d pyrimidine biosynthesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.38                                                                                                                       | 0.36                                                                                                                              | 0.39                                                                                 | 0.39                                                                |                                            |  |  |
| Superpathway of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | f pyrimidine deoxyribonucleotides de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | novo biosynthesis (E. coli)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.63                                                                                                                       | 0.70                                                                                                                              | 0.66                                                                                 | 0.66                                                                | (a)                                        |  |  |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pyrimidine deoxyribonucleotic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | es de novo biosynthesis III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.18                                                                                                                       | 0.15                                                                                                                              | 0.20                                                                                 | 0.18                                                                | ()                                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pyrimidine deoxyribonucleot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ides de novo biosynthesis I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.64                                                                                                                       | 0.71                                                                                                                              | 0.67                                                                                 | 0.68                                                                |                                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pyrimidine deoxyribonucleoti<br>Pyrimidine deoxyribonucleoti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | des de novo biosynthesis II<br>les hiosynthesis from CTP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.46                                                                                                                       | 0.52                                                                                                                              | 0.45                                                                                 | 0.45                                                                |                                            |  |  |
| Superpar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | thway of pyrimidine deoxyribonucleo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tides de novo biosynthesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.60                                                                                                                       | 0.60                                                                                                                              | 0.60                                                                                 | 0.60                                                                |                                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Superpathway of arginine a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nd polyamine biosynthesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.14                                                                                                                       | 0.10                                                                                                                              | 0.13                                                                                 | 0.12                                                                |                                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L-arginine bios                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nthesis I (via L-ornithine)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.58                                                                                                                       | 0.66                                                                                                                              | 0.63                                                                                 | 0.61                                                                |                                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Superpathway of purine nucleoti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | des de novo biosynthesis II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.52                                                                                                                       | 0.57                                                                                                                              | 0.51                                                                                 | 0.50                                                                | N. I. of the state of the                  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5-aminoimidazole ril                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | onucleotide biosynthesis I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.68                                                                                                                       | 0.75                                                                                                                              | 0.72                                                                                 | 0.71                                                                | Nucleofide biosynthesis metabolisi         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Superpathway of guanosine nucleoti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | des de novo biosynthesis II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.68                                                                                                                       | 0.73                                                                                                                              | 0.69                                                                                 | 0.69                                                                |                                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Superpathway of adenosine nucleoti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | des de novo biosynthesis II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.70                                                                                                                       | 0.77                                                                                                                              | 0.74                                                                                 | 0.73                                                                |                                            |  |  |
| S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Superpathway of 5-aminoimidazole r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ibonucleotide biosynthesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.68                                                                                                                       | 0.76                                                                                                                              | 0.72                                                                                 | 0.71                                                                |                                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Adenosine ribonucle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tides de novo biosynthesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.74                                                                                                                       | 0.81                                                                                                                              | 0.79                                                                                 | 0.77                                                                |                                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Guanosine ribonucleou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | des de novo biosynthesis il                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00                                                                                                                       | 0.71                                                                                                                              | 0.09                                                                                 | 0.69                                                                |                                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Guanosine deoxyribonucleoti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | des de novo biosynthesis II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.66                                                                                                                       | 0.71                                                                                                                              | 0.69                                                                                 | 0.69                                                                |                                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Superpathway of guanosine nucleot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ides de novo biosynthesis I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.69                                                                                                                       | 0.74                                                                                                                              | 0.70                                                                                 | 0.70                                                                |                                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Superpathway of adenosine nucleot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ides de novo biosynthesis I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.73                                                                                                                       | 0.79                                                                                                                              | 0.76                                                                                 | 0.76                                                                |                                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Superpathway of purine nucleot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ides de novo biosynthesis I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.68                                                                                                                       | 0.75                                                                                                                              | 0.71                                                                                 | 0.71                                                                |                                            |  |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sum of nucleotide biosynthesis meta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | bonucleosides degradation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.10                                                                                                                       | 0.07                                                                                                                              | 0.08                                                                                 | 0.09                                                                |                                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pyrimidine deoxyribor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ucleotide phosphorylation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.59                                                                                                                       | 0.65                                                                                                                              | 0.62                                                                                 | 0.61                                                                |                                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Purine nucleobase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | degradation I (anaerobic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.13                                                                                                                       | 0.09                                                                                                                              | 0.11                                                                                 | 0.11                                                                |                                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Purine ri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | bonucleosides degradation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.15                                                                                                                       | 0.10                                                                                                                              | 0.12                                                                                 | 0.13                                                                | Nucleotide degradation motabolism          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Superpathway of purine deoxyri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | bonucleosides degradation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.25                                                                                                                       | 0.24                                                                                                                              | 0.23                                                                                 | 0.21                                                                | restruction and a second second            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Purine nucleotic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | es degradation II (aerobic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.49                                                                                                                       | 0.46                                                                                                                              | 0.45                                                                                 | 0.47                                                                |                                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Guanosine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nucleotides degradation III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.52                                                                                                                       | 0.46                                                                                                                              | 0.53                                                                                 | 0.55                                                                |                                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sum of nucleotide degradation meta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | bolism relative abundance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.74                                                                                                                       | 2.51                                                                                                                              | 2.66                                                                                 | 2.71                                                                |                                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Superpathway of pyrimidi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ne ribonucleosides salvage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.34                                                                                                                       | 0.31                                                                                                                              | 0.28                                                                                 | 0.29                                                                |                                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pyrimidine des                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | xyribonucleosides salvage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.24                                                                                                                       | 0.24                                                                                                                              | 0.23                                                                                 | 0.20                                                                |                                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Superpathway of pyrimidine de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | oxyribonucleoside salvage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.35                                                                                                                       | 0.37                                                                                                                              | 0.35                                                                                 | 0.31                                                                | Nucleotide salvage metabolism              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Superpathway of pyrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | idine nucleobases salvage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.72                                                                                                                       | 0.79                                                                                                                              | 0.75                                                                                 | 0.75                                                                |                                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Adenin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e and adenosine salvage ill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.47                                                                                                                       | 0.50                                                                                                                              | 0.50                                                                                 | 0.50                                                                |                                            |  |  |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | oum of nucleotide salvage meta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ousin relative abundance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.13                                                                                                                       | 2.20                                                                                                                              | 2.10                                                                                 | 2.04                                                                | Market Inc. 12                             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Module level 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NU                                                                                                                         | NI                                                                                                                                | N2                                                                                   | NS                                                                  | Module level 2                             |  |  |
| Entry of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Relative abundance (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Functio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n desc                                                                                                                     | ription                                                                                                                           | apres                                                                                | Nu                                                                  | icleotides metabolism nathways             |  |  |
| enzymes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ( 0 0 21 ( 0 0 21 ( 0 0 21 ( 0 0 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pihonuclassida dinharnhata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | raductors                                                                                                                  |                                                                                                                                   |                                                                                      |                                                                     |                                            |  |  |
| C:1.3.1.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 0.07 0 0.10 0 0.09 0 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dihydroorotate dehydrogena                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | se (NAD(+                                                                                                                  | -11                                                                                                                               |                                                                                      |                                                                     |                                            |  |  |
| C:1.3.5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.07 0 0.06 0 0.06 0 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dihydroorotate dehydrogena                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | se (quinor                                                                                                                 | 143                                                                                                                               |                                                                                      |                                                                     | (b)                                        |  |  |
| C-1.3.98.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dihydroorotate oxidase (fun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | arate)                                                                                                                     |                                                                                                                                   |                                                                                      |                                                                     | (0)                                        |  |  |
| C:2.1.1.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 0.17 0 0.21 0 0.18 0 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Thymidylate synthase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                            |                                                                                                                                   |                                                                                      |                                                                     |                                            |  |  |
| C:2.1.3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 0.14 0 0.16 0 0.15 0 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Aspartate carbamovitransfer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ase                                                                                                                        |                                                                                                                                   |                                                                                      |                                                                     |                                            |  |  |
| C-2.4.2.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Co12 Co14 Co15 Co15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Orotate phosphoribosyltran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ferase                                                                                                                     |                                                                                                                                   |                                                                                      | Perintidia                                                          |                                            |  |  |
| C:2.7.4.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 0.14 0 0.16 0 0.15 0 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UMP kinase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                            |                                                                                                                                   |                                                                                      | - /                                                                 | -                                          |  |  |
| C:2.7.4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 0.14 0 0.16 0 0.15 0 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Nucleoside-diphosphate kins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ise                                                                                                                        |                                                                                                                                   |                                                                                      |                                                                     |                                            |  |  |
| 0.16133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Colla Colle Colls Colls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | dTMP kinase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                            |                                                                                                                                   |                                                                                      |                                                                     |                                            |  |  |
| C:4.1.1.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 0.14 0 0.16 0 0.15 0 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Orotidine-5'-photphatate deca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rboxvlate                                                                                                                  |                                                                                                                                   |                                                                                      |                                                                     | 1                                          |  |  |
| C:6.3.4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | @ 0.14 @ 0.16 @ 0.15 @ 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CTP synthase (glutamine hy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | drolvnng)                                                                                                                  |                                                                                                                                   |                                                                                      |                                                                     | Nucleotide biosynthesis                    |  |  |
| C:6.3.5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.30 0.33 0.31 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Carbamovi-phosphate synth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ase (glutar                                                                                                                | nine-hvdrol                                                                                                                       | lvzing)                                                                              |                                                                     | metabolism                                 |  |  |
| C-111205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 0.19 0 0.20 0 0.15 0 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TMP dehydrogenere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                            | sum of reli                                                                                                                       | nive abund                                                                           | ance                                                                | ine thousan                                |  |  |
| C2122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 0.16 0 0.17 0 0.17 0 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Phosphoribosviglycinamide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | formyltra                                                                                                                  | asferase                                                                                                                          |                                                                                      |                                                                     |                                            |  |  |
| C24214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 0.14 0 0.16 0 0.15 0 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Amidophosphoribosvitransf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | erase                                                                                                                      |                                                                                                                                   |                                                                                      |                                                                     |                                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.15 0.17 0.16 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Adenvlate kinase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                            |                                                                                                                                   |                                                                                      |                                                                     |                                            |  |  |
| C:1.7.4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 0 14 0 0 16 0 0 15 0 0 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I CONTRACTOR AND A |                                                                                                                            |                                                                                                                                   |                                                                                      |                                                                     |                                            |  |  |
| C:2.7.4.3<br>C:2.7.4.8<br>C:4.3.2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 0.14 0 0.16 0 0.15 0 0.15<br>0 0.14 0 0.16 0 0.15 0 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Adenvlosuccinate lyace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                            |                                                                                                                                   |                                                                                      |                                                                     |                                            |  |  |
| C 2.7.4.3<br>C 2.7.4.8<br>C 4.3.2.2<br>C 6.3.2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 0.14 0 0.16 0 0.15 0 0.15<br>0 0.14 0 0.16 0 0.15 0 0.15<br>0 0.19 0 0.23 0 0.21 0 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Adenvlosuccinate lvase<br>Phosphoribosvlaminoimidaz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | olesuccino                                                                                                                 | carboxamie                                                                                                                        | ie synthase                                                                          | Purine                                                              |                                            |  |  |
| C 2.7.4.3<br>C 2.7.4.8<br>C 4.3.2.2<br>C 6.3.2.6<br>C 6.3.3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 0.14 0 0.16 0 0.15 0 0.15<br>0 0.14 0 0.16 0 0.15 0 0.15<br>0 0.19 0 0.23 0 0.21 0 0.22<br>0 0.14 0 0.16 0 0.15 0 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Adenvlosuccinate lvase<br>Phosphoribosylaminoimidae<br>Phosphoribosylaminoimidae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | olesuccino<br>amidine c                                                                                                    | carboxamie<br>velo-ligase                                                                                                         | de svuthase                                                                          | Purine                                                              |                                            |  |  |
| C-2.7.4.3<br>C-2.7.4.8<br>C-4.3.2.2<br>C-6.3.2.6<br>C-6.3.3.1<br>C-6.3.4.13<br>C-6.3.4.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 0.14 0 0.16 0 0.15 0 0.15<br>0 0.14 0 0.16 0 0.15 0 0.15<br>0 0.19 0 0.23 0 0.21 0 0.22<br>0 0.14 0 0.16 0 0.15 0 0.15<br>0 0.14 0 0.16 0 0.15 0 0.15<br>0 0.14 0 0.16 0 0.15 0 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Adenvlosuccinate lvase<br>Phosphoribosylaminoimidar<br>Phosphoribosylaminoimidar<br>Phosphoribosylamine-glycin<br>Solarbayyaminoimidar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | olesuccino<br>amidine cu<br>te ligave                                                                                      | carboxamie<br>velo-ligase                                                                                                         | le svuthase                                                                          | Purine                                                              |                                            |  |  |
| C2743<br>C2748<br>C4322<br>C6326<br>C6331<br>C63413<br>C63418<br>C6344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0         0.14         0         0.16         0         0.15         0         0.15           0         0.14         0         0.16         0         0.15         0         0.15           0         0.14         0         0.16         0         0.15         0         0.15           0         0.14         0         0.16         0         0.15         0         0.15           0         0.14         0         0.16         0         0.15         0         0.15           0         0.14         0         0.16         0         0         0         0         0.15         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         < | Adenviate innase<br>Adenviosucinate ivase<br>Phosphoribosviaminoimidaz<br>Phosphoribosviformvigivcin<br>Phosphoribosviamine-givcii<br>5-(carboxvamino)imidazole r<br>Adenviosucinate svathase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | olesuccino<br>amidine cu<br>le ligave<br>ibonucleo                                                                         | carboxamie<br>vclo-ligase<br>tide synthas                                                                                         | de svuthase<br>æ                                                                     | Purine                                                              |                                            |  |  |
| C1743<br>C1748<br>C4322<br>C6326<br>C6331<br>C63413<br>C63413<br>C63418<br>C6344<br>C6352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Connyine cinate lyase<br>Adenviouccinate lyase<br>Phosphoribosylaminoimidaz<br>Phosphoribosylamine-zlyci<br>5-(carboxyamino)inidazole r<br>denviouccinate synthase<br>GMP synthase (glutamine-hy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | olesuccino<br>amidine cu<br>te ligate<br>ibonucleo                                                                         | carboxamic<br>velo-ligase<br>tide synthas                                                                                         | de svuthase<br>ie                                                                    | Purine                                                              |                                            |  |  |
| C1743<br>C2748<br>C4322<br>C6326<br>C6331<br>C63413<br>C63418<br>C6344<br>C6352<br>C6352<br>C6353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.14         0.16         0.15         0.15           0.14         0.16         0.15         0.15         0.15           0.14         0.16         0.15         0.15         0.15           0.14         0.16         0.15         0.15         0.15           0.14         0.16         0.15         0.15         0.15           0.14         0.16         0.15         0.15         0.15           0.14         0.16         0.15         0.15         0.15           0.14         0.16         0.15         0.15         0.15           0.15         0.15         0.15         0.15         0.15           0.15         0.16         0.15         0.15         0.15           0.15         0.16         0.15         0.15         0.15           0.15         0.16         0.15         0.15         0.15           0.20         0.20         0.20         0.20         0.20         0.20         0.20           0.20         0.20         0.20         0.30         0.30         0.30         0.30                                                                                               | Gunnyian cinais<br>Phosphoribosylaminoimidar<br>Phosphoribosylaminoimidar<br>Phosphoribosylamine-zlyci<br>5-(carboxyamino)imidarole r<br>Adenylosuccinate synthase<br>GMP synthase (edutamine-h<br>Phosphoribosylformylglycin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | olesuccino<br>amidine cr<br>ie ligave<br>ibonucleo<br>rdrolvring<br>amidine st                                             | carboxamis<br>vclo-ligase<br>tide synthas<br>)<br>ynthase                                                                         | de svuthase<br>se                                                                    | Purine                                                              |                                            |  |  |
| C:1743<br>C:2748<br>C:4322<br>C:6326<br>C:6331<br>C:63413<br>C:63418<br>C:6344<br>C:6352<br>C:6353<br>C:6353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.14         0.16         0.15         0.15           0.14         0.16         0.15         0.15           0.14         0.16         0.15         0.15           0.14         0.16         0.15         0.15           0.14         0.16         0.15         0.15           0.14         0.16         0.15         0.15           0.14         0.16         0.15         0.15           0.14         0.16         0.15         0.15           0.15         0.15         0.15         0.15           0.15         0.15         0.15         0.15           0.15         0.15         0.15         0.15           0.20         0.20         0.19         0.19           0.20         0.22         0.30         0.30           1.16         2.37         2.23         2.23           0.80         0.80         0.80         0.80                                                                                                                                                                                                                                                                      | Guantine tinate<br>Adentioucinate Vase<br>Phosphoribotylaminoimidaz<br>Phosphoribotylamino-givin<br>5-(carboxyamino)inidazole r<br>Adentioucinate synthase<br>GAP synthase (caltamine)-<br>Phosphoribotylforawigiytin<br>Dibydronesell Adentica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | olesuccino<br>amidine c<br>ie ligate<br>ibonucleo<br>adrohving<br>amidine s                                                | carboxamis<br>velo-ligase<br>tide tynthas<br>ynthase<br>Sum of rels                                                               | de synthase<br>æ<br>ntive abund                                                      | Purine                                                              |                                            |  |  |
| C2.7.4.3<br>C2.7.4.8<br>C4.3.2.2<br>C6.3.2.4<br>C6.3.4.13<br>C6.3.4.13<br>C6.3.4.14<br>C6.3.5.2<br>C6.3.5.3<br>C1.3.14<br>C3.5.1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Guanviae timore<br>Adenviouciante Vasse<br>Phosphoribovylaminoimida<br>Phosphoribovylamine-advin<br>Phosphoribovylamine-advin<br>S-(carboxyaminoimidanole r<br>Adenviouciante vynthase<br>GMP synthase (glutamine-br<br>Phosphoribovylforawigivin<br>Dihvdrourscil dehvdrogenas<br>Peroxymeidoacytals uraido                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | olesuccino<br>amidine cu<br>ibonucleo<br>adrohving<br>amidine su<br>e (NAD(+)                                              | carboxamic<br>vclo-ligase<br>tide tynthas<br>ynfhase<br>Sum of rela<br>)<br>nidohydrol                                            | de synthase<br>æ<br>stive abund                                                      | Purine                                                              |                                            |  |  |
| C2.7.43<br>C2.7.45<br>C4.3.2.2<br>C5.3.2.6<br>C5.3.2.6<br>C5.3.413<br>C5.3.413<br>C5.3.415<br>C5.3.415<br>C5.3.42<br>C5.3.5.2<br>C5.3.53<br>C1.3.11<br>C3.5.110<br>C3.5.2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gunning innie<br>Adenviouciansk Pass<br>Phosphoriboviloruvigivin<br>Phosphoriboviloruvigivin<br>Phosphoriboviloruvigivin<br>Scarboxyaminojinidarole r<br>Adenviouciansk vathase<br>GMP vynthase (glutamine-hy<br>Phosphoriboviloruvigivin<br>Dihvdropracii dehvdrogenas<br>Peroxyureidoactylais ureido<br>Dihvdroprimidinase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | olesuccino<br>amidine c<br>ie ligave<br>ibonucleo<br>odrolvning<br>amidine s<br>e (NAD(+)<br>acrylate an                   | carboxamic<br>vclo-lizate<br>tide tynthas<br>ymthase<br>Sum of rela<br>()<br>midohydrol                                           | de synthase<br>e<br>ative abund<br>ase                                               | Purine<br>ance<br>Pyrimidir                                         |                                            |  |  |
| C2.7.43<br>C2.7.43<br>C2.7.45<br>C4.3.2.2<br>C6.3.2.6<br>C6.3.3.1<br>C6.3.4.13<br>C6.3.4.13<br>C6.3.4.13<br>C6.3.4.4<br>C6.3.5.2<br>C6.3.5.3<br>C1.3.1.1<br>C3.5.1.110<br>C3.5.2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Guanviae cinaxe<br>Adewstouccinate Yaxse<br>Phosphoribovylaminoimida<br>Phosphoribovylforuvtdytion<br>Phosphoribovylforuvtdytion<br>Phosphoribovylforuvtdytion<br>CAE yvanhase (guanaime-br<br>Fhosphoribovylforuvtdytion<br>Dihvdrouracii dehvdrogenas<br>Peroxyureidoscrylate ureido<br>Dihvdropyrimidinase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | olesuccino<br>amidine cr<br>se ligave<br>ibonucleot<br>rdrolvzing<br>amidine sr<br>e (NAD(+)<br>acrylate an                | carboxamic<br>velo-ligase<br>tide tynthas<br>ynthase<br>Sum of rela<br>nidohydrol<br>Sum of rela                                  | de synthase<br>e<br>stive abund<br>ase<br>stive abund                                | nnce Pyrimidiz                                                      | 1                                          |  |  |
| C27.43<br>C27.43<br>C27.45<br>C43.22<br>C43.24<br>C63.26<br>C63.41<br>C63.413<br>C63.44<br>C63.52<br>C63.53<br>C13.11<br>C3.51.110<br>C3.522<br>C3.52.17<br>C3.52.17<br>C3.52.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Guinvine timore<br>Adews/outcome by your<br>Phosphoribov/four-tdytwin<br>Phosphoribov/four-tdytwin<br>Phosphoribov/four-tdytwin<br>Phosphoribov/four-tdytwin<br>GMP synthase (clutamine-ln<br>Phosphoribov/formvigtytin<br>Dihvdrourscil dehvdrogenas<br>Peroxymeidoacr/lais-urido<br>Dihvdropvrimidinase<br>Hvdropvrimidinase<br>Hvdropvrimidinase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | olesuccino<br>amidine (t<br>se ligate<br>ibonucleol<br>rdrolvzing<br>amidine (t<br>e (NAD(+)<br>acrylate an                | carboxamic<br>vclo-ligase<br>itide tynthat<br>)<br>withase<br>Sum of rela<br>nidohydrol<br>Sum of rela                            | de synthase<br>e<br>ative abund<br>ase<br>ative abund                                | Purine<br>ance<br>pyrimidiz                                         | n<br>Nucleotide degradation                |  |  |
| C2.7.4.3<br>C2.7.4.8<br>C2.7.4.8<br>C4.3.2.2<br>C6.3.3.1<br>C6.3.4.13<br>C6.3.4.13<br>C6.3.4.145<br>C6.3.5.3<br>C6.3.5.3<br>C1.3.1.1<br>C.3.5.1.10<br>C.3.5.2.17<br>C3.5.2.6<br>C3.5.2.17<br>C3.5.2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Guanviae cinave<br>Adewstouccinate Yasse<br>Phosphoribovylaminoimida<br>Phosphoribovylamine-alvcin<br>Phosphoribovylamine-alvcin<br>S-(carboxynamio)imidanole r<br>Ademstouccinate synthase<br>GAP synthase (clutamine-hr<br>Phosphoribosylforawigivein<br>Dihvdrouracil dehvdrogenas<br>Peroxynreidoacyvlate ureido<br>Dihvdrouracil dehvdrogenas<br>Peroxynreidoacyvlate ureido<br>Dihvdropyviimidinase<br>Hvdroxyviiourate hvdrolase<br>Allantoicase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | olesuccino<br>amidine (t<br>se ligate<br>ibonucleol<br>rdrolvzing<br>amidine (t<br>e (NAD(+)<br>acrylate an                | carboxami<br>vclo-ligase<br>tide ivnthas<br>)<br>vnthase<br>Sum of rela<br>nidohydrol<br>Sum of rela                              | de synthase<br>a<br>ative abund<br>ase<br>ative abund                                | Purine<br>Ance<br>Pyrimidir                                         | se<br>Nucleotide degradation<br>metabolism |  |  |
| C27.43<br>C27.43<br>C27.48<br>C43.22<br>C43.22<br>C43.24<br>C63.413<br>C63.413<br>C63.413<br>C63.413<br>C63.42<br>C63.52<br>C63.53<br>C13.110<br>C3.522<br>C3.52.17<br>C3.52.45<br>C3.5.24<br>C3.5.24<br>C3.5.24<br>C3.5.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Guanviate Einkve<br>Adewstouccinste Frase<br>Phosphoribovylforurdytfor<br>Phosphoribovylforurdytfor<br>Phosphoribovylforurdytfor<br>Phosphoribovylforurdytfor<br>Carbovynamiopilidadou<br>GMP vynafase (Photomyrffyria<br>Phosphoribovylforurdytfi<br>Dihydrourscil dehydrogenas<br>Peroxyneidoacryfas ursido<br>Dihydrourscil dehydrogenas<br>Peroxyneidoacryfas ursido<br>Dihydropyrianidinase<br>Hydroxyriouras hydrolase<br>Allantoinase<br>JAP cyclohydrolase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | olesuccino<br>amidine (<br>te ligate<br>ibonucleot<br>odrobving<br>amidine (<br>e (NAD(+)<br>acrylate an                   | carboxamis<br>vclo-ligase<br>tide synthat<br>)<br>wnthase<br>Sum of rela<br>)<br>nidohydrol<br>Sum of rela                        | de swuthase<br>æ<br>ative abund<br>ase<br>ative abund                                | nnce Pyrimidir<br>ance Pyrimidir                                    | s<br>Nucleotide degradation<br>metabolism  |  |  |
| C1743<br>C2743<br>C2743<br>C4322<br>C4322<br>C4331<br>C6343<br>C6344<br>C6354<br>C6354<br>C35110<br>C3522<br>C35217<br>C3524<br>C3544<br>C3544                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Guanviate Einste<br>Adewsfouctante Frase<br>Phosphoribov/fourwidytion<br>Phosphoribov/fourwidytion<br>Phosphoribov/fourwidytion<br>Phosphoribov/fourwidytion<br>GMP vurhase (glutamine-br<br>Phosphoribov/forwidytion<br>Dihvdrouracii dehvdrogenas<br>Peroxvureidoactvlate ureido<br>Dihvdrouracii dehvdrogenas<br>Peroxvureidoactvlate ureido<br>Dihvdrourste hvdroiase<br>Allantoiase<br>Allantoiase<br>IMP cyclohvdrolase<br>Adenosine deaminaxe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | olesuccino<br>amidine (<br>te ligate<br>ibonucleot<br>rdrolvzing<br>amidine (<br>e (NAD(+)<br>acrylate an                  | carboxamis<br>vclo-ligase<br>tide synthat<br>)<br>wnthase<br>Sum of rela<br>)<br>nidohydrol<br>Sum of rela                        | de swuthase<br>æ<br>ative abund<br>ase<br>ative abund                                | Purine<br>Pyrimidia<br>Purine                                       | ae<br>Nucleotide degradation<br>metabolism |  |  |
| C2743<br>C2743<br>C2743<br>C4322<br>C4322<br>C4332<br>C4343<br>C63413<br>C63413<br>C6344<br>C6343<br>C6344<br>C6353<br>C1341<br>C35110<br>C3522<br>C3524<br>C3524<br>C3524<br>C3544<br>C3544<br>C3544<br>C41197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Guintine Einese<br>Adewstouccinne Frase<br>Phosphoriborylaminoimida<br>Phosphoriborylamina-chvii<br>Phosphoriborylamina-chvii<br>S-Garboxynamioimidanole ri<br>Adenstouccinate synthase<br>GMP synthase (clutamine-lu<br>Phosphoriborylformvigivein<br>Dihvdrourscii dehvdrogenas<br>Peroxyneidoacrvlase urido<br>Dihvdropvrimidinase<br>Hvdrozvisourale hydrolase<br>Allantoiase<br>Allantoiase<br>JaBr cylohydrolase<br>Allantoiase<br>Jacos-4-hydroxy-4-arboxy-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | olesuccino<br>amidine cu<br>se ligate<br>ibonucleot<br>rdrolvzing<br>amidine sy<br>e (NAD(+)<br>acrylate an<br>5-ureidoim  | carboxamic<br>vdo-lizzse<br>tide tynthat<br>)<br>rathase<br>Sum of rela<br>iddazoline d<br>Sum of rela                            | de svuthase<br>æ<br>stive abund<br>ase<br>ative abund<br>ecarboxylasi<br>stive abund | Purine<br>Anne<br>Pyrimidia<br>Purine                               | *<br>Nucleotide degradation<br>metabolism  |  |  |
| C27.43<br>C27.43<br>C27.43<br>C23.43<br>C43.22<br>C53.26<br>C63.413<br>C63.413<br>C63.415<br>C63.415<br>C63.53<br>C63.53<br>C63.53<br>C13.11<br>C3.5110<br>C3.522<br>C3.5217<br>C3.524<br>C3.534<br>C3.5410<br>C3.544<br>C4.11.97<br>C1.51.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Guantiate Einixe<br>Adewstouccinate Yasse<br>Phosphoriborylaminoimida<br>Phosphoriborylamine-alvcin<br>Phosphoriborylamine-alvcin<br>S-(carboxynamio)imidatole r<br>Adewstouccivforwrigtvein<br>Dihvdrourscil dehvdrogenas<br>Phosphoriborylforwrigtvein<br>Dihvdrourscil dehvdrogenas<br>Peroxynreidod adhvdrogenas<br>Peroxynreidod adhvdrogenas<br>Peroxynreidod adhvdrogenas<br>Peroxynreidod adhvdrogenas<br>Peroxynreidod adhvdrogenas<br>Peroxynreidod adhvdrogenas<br>Peroxynreidod adhvdrogenas<br>Peroxynreidod adhvdrogenas<br>Peroxynreidod adhvdrogenas<br>Dihvdropyriamidinase<br>Hvdroxyriourate hydrolase<br>Allantoicase<br>IAP erolohvdrolase<br>2-oxo-4-hvdroxy-4-carboxy-4-<br>Dihvdrofolate reductase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | olesuccino<br>amidine cu<br>se ligate<br>ibonucleof<br>rdrolvzing<br>amidine st<br>e (NAD(+)<br>acrylate an<br>5-ureidoim  | carboxamic<br>vdo-lizzse<br>tide tynthase<br>ynathase<br>Sum of reli<br>nidohydrol<br>Sum of reli<br>sum of reli                  | de synthase<br>e<br>ative abund<br>ase<br>ative abund<br>ecarboxylas                 | Purine<br>Annee<br>Pyrimidin<br>Purine                              | a<br>Nucleotide degradation<br>metabolism  |  |  |
| C27.43<br>C27.43<br>C27.43<br>C43.22<br>C43.22<br>C43.23<br>C63.43<br>C63.44<br>C63.52<br>C63.52<br>C35.22<br>C35.22<br>C35.217<br>C35.22<br>C35.24<br>C35.24<br>C35.44<br>C41.197<br>C15.13<br>C27.121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Guanviae tinkie<br>Adewstoucchae Fasse<br>Phosphoribovylaminoimida<br>Phosphoribovylaminoimidae<br>Phosphoribovylamine-tycii<br>S(carboxynamioimidaube)<br>S(carboxynamioimidaube)<br>Adewsteuccinate synthase<br>GMP vynhase (glutamine-th<br>Phosphoriboxylforwrdfytun<br>Dihydrouracii dehydrogenar<br>Peroxyneidoacrylate ursido<br>Dihydropyrimidinase<br>Hydroxyrisourale hydrolase<br>Allantoirase<br>IAP cyclohydrolase<br>Adenoine deaminase<br>2-oxo-4-hydroxy-4-carboxy-i<br>Dihydrofolate reductase<br>Thymdine kinnos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | olesuccino<br>amidine (t<br>ie ligave<br>ibonucleot<br>rdrolvring<br>amidine (t<br>e (NAD(+))<br>acrylate an<br>5-ureidotm | carboxamii<br>yclo-ligase<br>iide synthas<br>yrathase<br>Sum of rela<br>nidohydroli<br>Sum of rela                                | de svuthase<br>e<br>ative abund<br>ase<br>ative abund<br>ecarboxylas                 | Purine<br>Pyrimidia<br>ance<br>Purine<br>Pyrimidia                  | a<br>Nucleotide degradation<br>metabolism  |  |  |
| C27.43<br>C27.43<br>C27.43<br>C43.22<br>C63.26<br>C63.413<br>C63.413<br>C63.44<br>C63.52<br>C63.53<br>C13.11<br>C3.52.110<br>C3.52.2<br>C3.52.17<br>C3.52.5<br>C3.52.4<br>C3.52.4<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3.54<br>C3 | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Guantine Ennie<br>Guantine Ennie<br>Phosphoribovilaminoimida<br>Phosphoribovilaminoimida<br>Phosphoribovilamine-dvin<br>Phosphoribovilamine-dvin<br>S-(carboxynamiojimidane) er<br>Adamiouccinate synthase<br>GMP synthase (clutamine-lu<br>Phosphoribovilaruvickyrin<br>Dihvdrourzeit dehvdrogena<br>Peroxyureidoacylate/ureido<br>Dihvdropyrimidinase<br>Hydroxyrisourale hydrolase<br>Allantoiase<br>IMP cyclohydrolase<br>Adenosine deaminase<br>2-oxo-laydroxy-4-arboxy-i<br>Dihvdrofolate reductase<br>Thwmdfine kinase<br>Uridime kinase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | olesuccino<br>amidine (t<br>ligate<br>ibonucleo)<br>rdrolvzing<br>amidine (t<br>e (NAD(+)<br>acrylate an<br>5-ureidoim     | carboxamii<br>yclo-lizzse<br>tide tynthas<br>ynthase<br>Sum of reli<br>nidohydrol<br>Sum of reli<br>nidazoline d<br>Sum of reli   | de svuthase<br>æ<br>ntive abund<br>ase<br>ecarboxylas<br>trive abund                 | Purine<br>ance<br>ance<br>ance<br>ance<br>Pyrimidiz                 | a<br>Nucleotide degradation<br>metabolism  |  |  |
| C2743<br>C2743<br>C4322<br>C4322<br>C6326<br>C6331<br>C63413<br>C63413<br>C6344<br>C6352<br>C6353<br>C6353<br>C1311<br>C35217<br>C3522<br>C3524<br>C3524<br>C3544<br>C41197<br>C1513<br>C27148<br>C2421                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gunning Einste<br>Adewsloutenne Frase<br>Phosphoriborylaminoimida<br>Phosphoriborylamine-edvin<br>Phosphoriborylamine-edvin<br>S-Garboxynminoimidanole r<br>Adewsloutenia synthase<br>GMP synthase (clutamine-lu<br>Phosphoriborylformvigiven<br>Dihvdrourseil dehvdrogenas<br>Peroxynreidoatrylamine-<br>Phosphoriborylformvigiven<br>Dihvdropyrimidinase<br>Hvdroxyriourale hydrolase<br>Allantoiase<br>Allantoiase<br>Allantoiase<br>JaBe cylohydrolase<br>Adenoim deaminase<br>J-oxo-4-hydroxy-4-arboxy-i<br>Dihvdrofolate reductase<br>Thymidine kinase<br>Unifane linase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | olesuccino<br>amidine (<br>ligate<br>ligate<br>amidine y<br>e (NAD(+)<br>acrylate an<br>5-ureidoim                         | carboxamii<br>victo-lizzse<br>iide synthat<br>yrathase<br>Sum of rela<br>midohydrol<br>Sum of rela<br>sidazoline d<br>Sum of rela | de synthase<br>e<br>ative abund<br>ase<br>ecarboxylas<br>ative abund<br>ative abund  | Purine<br>ance<br>ance<br>pyrimidiz<br>Purine<br>pyrimidiz          | a<br>Nucleotide degradation<br>metabolism  |  |  |
| C2743<br>C2743<br>C4322<br>C4322<br>C4322<br>C4324<br>C6343<br>C6343<br>C6344<br>C6344<br>C6352<br>C6352<br>C3522<br>C3522<br>C3524<br>C3524<br>C3544<br>C3544<br>C3544<br>C3544<br>C3544<br>C3544<br>C3544<br>C2121<br>C1513<br>C27121<br>C2145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gunnine Einste<br>Adewsiouciane Passe<br>Phosphoriborylaminoimida<br>Phosphoriborylamine-alvcin<br>Phosphoriborylamine-alvcin<br>S-(carboxynamio)imidatole r<br>Adewsiouciane synthuse<br>GMP synthuse (clutamine-lu<br>Phosphoriborylformylgivin<br>Dihydropurscil dehydrogenas<br>Percywreiddactvlafe ursid<br>Dihydropyriamidinase<br>Hydroxyriaurate hydrolase<br>Allantoicase<br>IMP erchhydrolase<br>IMP erchhydrolase<br>Allantoicase<br>IMP erchhydrolase<br>IAP erchhydrolase<br>Allantoicase<br>IMP erchhydrolase<br>Jacheotine deminase<br>2-oxo-4-hydroxy-4-carboxy-4<br>Dihydrofolate reductase<br>Thymidine Einase<br>Uridine Einase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | olesuccino<br>amidine ci<br>se ligave<br>libonucleon<br>drohvzing<br>amidine s<br>e (NAD(+)<br>acrylate an<br>5-ureidoim   | carboxamie<br>vyclo-lizase<br>itide tynthas<br>)<br>ynthase<br>Sum of reli<br>nidohydrol<br>Sum of reli<br>Sum of reli            | de synthase<br>e<br>ative abund<br>ase<br>ecarboxylas<br>ative abund                 | Purine<br>Pyrimidia<br>Purine<br>Purine<br>Purine                   | e<br>Nucleotide degradation<br>metabolism  |  |  |
| C27.43<br>C27.43<br>C43.22<br>C43.22<br>C43.24<br>C63.34<br>C63.413<br>C63.413<br>C63.44<br>C63.52<br>C13.11<br>C3.5217<br>C3.522<br>C3.524<br>C3.524<br>C3.524<br>C3.544<br>C41.197<br>C1.513<br>C2.71.121<br>C2.71.121<br>C2.71.23<br>C3.543                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Guantiale Einkie<br>Adewstouccinale Fasse<br>Phosphoribov/fours/dytien<br>Phosphoribov/fours/dytien<br>Phosphoribov/fours/dytien<br>Phosphoribov/fours/dytien<br>S(carboyrumiojimidaube)<br>Ademsteine (guantamine-br<br>Fhosphoribov/form/dytien<br>Dihvdroursail dehvdrogenas<br>Peroxyvaridoactvlate ursido<br>Dihvdroursail dehvdrogenas<br>Peroxyvaridoactvlate ursido<br>Dihvdroursail dehvdrogenas<br>Peroxyvaridoactvlate ursido<br>Dihvdroursail dehvdrogenas<br>Peroxyvaridoactvlate<br>Allantoinsae<br>Allantoinsae<br>Allantoinsae<br>Jahr exclohvdrolase<br>Adenotine deaminate<br>Uridiane Einase<br>Uridiane Einase<br>Parine-buckeside phosphor<br>5-aucleotdase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | olesuccino<br>amidine ci<br>ligane<br>ibonucleol<br>cdrolvzing<br>amidine st<br>e (NAD(+)<br>acrylate an<br>S-ureidoim     | carboxamie<br>vyclo-ligase<br>itide tynthas<br>ymthase<br>Sum of reli<br>nidohydrol<br>Sum of reli<br>Sum of reli                 | de synthase<br>e<br>ative abund<br>ase<br>ative abund<br>ecarboxylai<br>ative abund  | nnce<br>Annce<br>Annce<br>Annce<br>Pyrimidiz<br>Pyrimidiz<br>Purine | a<br>Nucleotide degradation<br>metabolism  |  |  |

**Fig. 4.** Changes in the pathways (a) and enzymes (b) involved in the nucleotides metabolism of bacteria in the wastewater treated jointly by  $Fe^{6+}$  and  $SO_3^{2-}$  at different pH levels. N0 was the raw wastewater, and the pH value of N0 was 6.7 (unadjusted). N1, N2 and N3 were the treated wastewater at different pH levels, and the pH values of N1, N2 and N3 were 6.0, 7.0 and 9.0, respectively.



**Fig. 5.** The potential genes *sul2, sul3* and *intl1* hosts based on the network analysis (a) and the changes in the bacterial community (b) at the genus level in the wastewater treated by combined  $Fe^{6+}$  and  $SO_3^{2-}$ . The edge thickness in the network analysis was proportional to Pearson's correlation coefficients. N0 was the raw wastewater, and the pH value of N0 was 6.7 (unadjusted). N1, N2 and N3 were the treated wastewater at different pH levels, and the pH values of N1, N2 and N3 were 6.0, 7.0 and 9.0, respectively.

and the total relative levels of purine biosynthesis and salvage enzymes negatively correlated with genes sul2, sul3 and intI1 were 2.087 % and 1.788 %, respectively (Table 1). In these metabolic enzymes of nucleotide negatively correlated with genes sul2, sul3 and intI1, the relative levels sum of pyrimidine biosynthesis and salvage enzymes in the treated wastewater at pH 6.0, 7.0 and 9.0 were 2.365 %, 2.218 % and 2.204 %, respectively, and the total relative levels of purine biosynthesis and salvage enzymes were 1.991 %, 1.894 % and 1.878 %, respectively (Table 1). The relative levels of above these enzymes (the negative correlation with the changes of genes sul2, sul3 and intI1) in the treated wastewater were higher compared to the raw wastewater, suggesting that the bacterial response to the destruction of genes sul2, sul3 and intI1 by the combined treatment of  $Fe^{6+}$  and  $SO_3^{2-}$  was the activation of these enzymes. Among pH 6.0, 7.0 and 9.0, the relative levels of biosynthesis and salvage enzymes of pyrimidine and purine in the treated wastewater at pH 7.0 were higher than at pH 9.0, while were lower than those at pH 6.0. The results suggested that there might be more levels of genes sul2, sul3 and int11 damaged by the combined treatment of  $Fe^{6+}$  and  $SO_3^{2-}$  at acid conditions, which were coincident with the changes in the removal of genes sul2, sul3 and int11 by the combined treatment of  $Fe^{6+}$  and  $SO_3^{2-}$ at different pH levels. After the combined treatment of  $Fe^{6+}$  and  $SO_3^{2-}$ , the increasing degree in the total levels of pyrimidine biosynthesis enzymes (the negative correlation with the changes of genes sul2, sul3 and int11) involved in the bacterial response to the destruction of genes sul2, sul3 and intl1 at pH 6.0, 7.0 and 9.0 were 13.729 %, 6.385 % and 6.048 %, respectively, and the increased degree about pyrimidine salvage increased by 10.936 %, 5.812 % and 3.157 %, respectively (Table 2). The increasing levels of pyrimidine biosynthesis enzymes at different pH values were higher than the pyrimidine salvage enzymes. However, the purine change was the opposite result in which the increasing levels of purine biosynthesis enzymes at different pH values were lower than the purine salvage enzymes. This change could be caused by the greater availability of purine fragments in the wastewater than pyrimidines, suggesting that there might be more thorough damage of the pyrimidines bases by the combined treatment of  $Fe^{6+}$  and  $SO_3^2$  compared to the purine bases. Gmurek et al. [39] found similar results in which the bases of pyrimidines had a faster reaction with free radicals than purine.

After the treatment of combined  $Fe^{6+}$  and  $SO_3^{2-}$ , the decreasing degree in the total levels of pyrimidine metabolic enzymes (the positive relationship with the changes of genes sul2, sul3 and intI1) at pH 6.0, 7.0 and 9.0 were 22.761 %, 13.537 % and 11.309 %, respectively, and the reducing levels of purine metabolic enzymes were 20.897 %, 30.592 % and 23.803 %, respectively (Table 2). The decreasing degree of pyrimidine biosynthesis metabolic enzymes at pH 6.0 was higher than purine, while the opposite changes were found at pH 7.0 and 9.0. The changes suggested that SO<sub>4</sub><sup>•</sup> might be more likely to destroy pyrimidines than HO•, since the conversion of SO<sub>4</sub><sup>•-</sup> to HO• was more under acid while less in alkalinity. Zhang et al. [38] found that gene sul3 had more pyrimidines than gene sul2. This might be one of the reasons that the removal efficiency of gene sul2 was lower than gene sul3 at different pH levels. The relationship between the potential genes sul2, sul3 and intl1 hosts and enzymes involved into the bacterial nucleotide metabolism pathways was analyzed via a network analysis on the basis of the correlation of Pearson (|r| > 0.8) (Fig. 7b). Potential genes sul2, sul3 and int11 hosts were found to be inversely associated with all nucleotide metabolic enzymes (the negative correlation with the changes of genes sul2, sul3 and intI1), which could confirm that these enzymes changes were the bacterial repair response to the nucleotide breach. Fu et al. [49] found similar results that a high level of glutamine synthetase (GS) could promote nucleotide synthesis and DNA repair, and the changes in the GS level were negatively correlated with cancer treatment outcomes.

# 3.6. Hypothetic mechanisms

Fig. 7 shows the hypothetic mechanisms of the ARGs removal in the wastewater by the combined  $Fe^{6+}$  and  $SO_3^{2^-}$  treatment. The activation of the pyrimidine biosynthesis and salvage enzymes and the purine biosynthesis and salvage enzymes in the wastewater by the treatment of combined  $Fe^{6+}$  and  $SO_3^{2^-}$  was found at pH 6.0, 7.0 and 9.0 (Fig. 4b), and this activation was more significant at pH 6.0 compared to that at pH 7.0



**Fig. 6.** Network analysis on the relationship of enzymes involved into the bacterial nucleotides metabolism pathways with the genes *sul2*, *sul3* and *intl1* (a), and with the potential genes *sul2*, *sul3* and *intl1* hosts (b) in the wastewater treated by combined  $Fe^{6+}$  and  $SO_3^{2-}$ . The edge thickness was proportional to Pearson's correlation coefficients. The red edges and the blue edges represented positive and negative relations between two nodes, respectively. \* was the enzymes with negative relations with genes *sul2*, *sul3* and *intl1*. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

## Table 1

The relative levels of nucleotides metabolic enzymes with negative and positive relation with genes sul2, sul3 and int/1.

| Relation | Sample | Pyrimidine metabolic enzymes relative levels (%) |         |             |       | Purine metabolic enzymes relative levels (%) |         |             |       |
|----------|--------|--------------------------------------------------|---------|-------------|-------|----------------------------------------------|---------|-------------|-------|
|          |        | Biosynthesis                                     | Salvage | Degradation | Sum   | Biosynthesis                                 | Salvage | Degradation | Sum   |
| Negative | NO     | 1.787                                            | 0.300   | /           | 2.087 | 1.650                                        | 0.138   | /           | 1.788 |
|          | N1     | 2.032                                            | 0.333   | /           | 2.365 | 1.837                                        | 0.154   | /           | 1.991 |
|          | N2     | 1.901                                            | 0.318   | /           | 2.218 | 1.748                                        | 0.146   | /           | 1.894 |
|          | N3     | 1.895                                            | 0.310   | /           | 2.204 | 1.732                                        | 0.146   | /           | 1.878 |
| Positive | NO     | 0.075                                            | /       | /           | 0.075 | /                                            | 0.034   | /           | 0.034 |
|          | N1     | 0.058                                            | /       | /           | 0.058 | /                                            | 0.027   | /           | 0.027 |
|          | N2     | 0.065                                            | /       | /           | 0.065 | /                                            | 0.024   | /           | 0.024 |
|          | N3     | 0.066                                            | /       | /           | 0.066 | /                                            | 0.026   | /           | 0.026 |

/: no found.

N0 was the raw wastewater, and the pH value of N0 was 6.7 (unadjusted). N1, N2 and N3 were the treated wastewater at different pH levels, and the pH values of N1, N2 and N3 were 6.0, 7.0 and 9.0, respectively.

and 9.0. In consideration of the DNA removal performance in the wastewater at different pH values (Fig. 1b), it could be inferred that the activation of these enzymes mentioned above is the bacterial response to

the destruction of DNA, and the response of bacteria could be enhanced at the acidic condition. In addition, the DNA removal treated by the combined  $Fe^{6+}$  and  $SO_3^{2-}$  was achieved by disrupting the pyrimidines and Table 2

| The reaction of the bound of the bar | The relative levels of nucleotides metabolic enz | ymes with negative and | positive relation with | genes sul2, sul3 and intI1. |
|--------------------------------------------------------------------------|--------------------------------------------------|------------------------|------------------------|-----------------------------|
|--------------------------------------------------------------------------|--------------------------------------------------|------------------------|------------------------|-----------------------------|

| Relation | Sample | Change rate of pyrimidine metabolic enzymes relative levels (%) |         |             |         | Change rate of purine metabolic enzymes relative levels (%) |         |             |         |  |
|----------|--------|-----------------------------------------------------------------|---------|-------------|---------|-------------------------------------------------------------|---------|-------------|---------|--|
|          |        | Biosynthesis                                                    | Salvage | Degradation | Sum     | Biosynthesis                                                | Salvage | Degradation | Sum     |  |
| Negative | N1     | 13.729                                                          | 10.936  | /           | 13.327  | 11.290                                                      | 11.915  | /           | 11.338  |  |
|          | N2     | 6.385                                                           | 5.812   | /           | 6.302   | 5.894                                                       | 6.359   | /           | 5.930   |  |
|          | N3     | 6.048                                                           | 3.157   | /           | 5.633   | 4.959                                                       | 5.810   | /           | 5.025   |  |
| Positive | N1     | -22.761                                                         | /       | /           | -22.761 | /                                                           | -20.897 | /           | -20.897 |  |
|          | N2     | -13.537                                                         | /       | /           | -13.537 | /                                                           | -30.592 | /           | -30.592 |  |
|          | N3     | -11.309                                                         | /       | /           | -11.309 | /                                                           | -23.803 | /           | -23.803 |  |

/: no found.

N0 was the raw wastewater, and the pH value of N0 was 6.7 (unadjusted). N1, N2 and N3 were the treated wastewater at different pH levels, and the pH values of N1, N2 and N3 were 6.0, 7.0 and 9.0, respectively.



Fig. 7. Hypothetic mechanisms of the ARGs removal in the wastewater by the combined  $Fe^{6+}$  and  $SO_3^{2-}$  treatment.

purines of DNA by SO<sub>4</sub><sup>-</sup> and HO• (produced by the reaction of Fe<sup>6+</sup> with SO<sub>3</sub><sup>-</sup>). Pyrimidines were damaged by SO<sub>4</sub><sup>-</sup> and HO• more easily than purines, and SO<sub>4</sub><sup>-</sup> had better abilities to destroy purines and pyrimidines compared to HO•. The promotion of SO<sub>4</sub><sup>-</sup> to HO• conversion by the alkalinity condition (Eq. (4)) and the slowed conversion from SO<sub>4</sub><sup>+</sup> to HO• at the acid condition (Eq. (7)) resulted in higher removal rates of total DNA at pH 6.0 compared to those at pH 9.0. The contributors of SO<sub>4</sub><sup>-</sup> to the total DNA removal were higher than HO•, and the contributions of other factors to the total DNA removal increased with the increase of pH value from 6.0 to 9.0 (Fig. 1c).

## 4. Conclusions

In the wastewater treatment system of coupled  $Fe^{6+}/SO_3^{2-}$ , the decreasing pH level enhanced the DNA removal, the contributions of SO<sub>4</sub><sup>-</sup> and HO• to DNA removal, the permeability of cells, the metabolism levels of nucleotide biosynthesis and salvage in bacteria, and microbial community changes. SO<sub>4</sub><sup>-</sup> were more likely to cause the changes in the pyrimidine biosynthesis metabolism of nucleotide than HO•. The reduction in the level of genes *sul2*, *sul3* and *int11* host contributed to the

removal of genes sul2, sul3 and intI1.

## CRediT authorship contribution statement

**Changwei Niu:** Data curation, Methodology, Software, Writing – original draft. **Bing Wang:** Data curation, Investigation. **Zichao Wang:** Conceptualization, Funding acquisition, Investigation, Writing – review & editing. **Huaibin Zhang:** Investigation.

# Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

# Data availability

The authors do not have permission to share data.

### Acknowledgements

The works were supported by the Young Scientific and Technological Innovation Talents Project of Shenyang City, China (No. RC210057); the Natural Science Foundation of Liaoning Province, China (No. 2022MS176).

### Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.cej.2023.148042.

## References

- C. Wang, X. Liu, Y. Yang, Z. Wang, Antibiotic and antibiotic resistance genes in freshwater aquaculture ponds in China: A meta-analysis and assessment, J. Clean. Prod. 329 (2021), 129719.
- [2] I.C. Iakovides, I. Michael-Kordatou, N.F.F. Moreira, A.R. Ribeiro, T. Fernandes, M. F.R. Pereira, O.C. Nunes, C.M. Manaia, A.M.T. Silva, D. Fatta-Kassinos, Continuous ozonation of urban wastewater: Removal of antibiotics, antibiotic-resistant *Escherichia coli* and antibiotic resistance genes and phytotoxicity, Water Res. 159 (2019) 333–347.
- [3] A. Pruden, R. Pei, H. Storteboom, K.H. Carlson, Antibiotic resistance genes as emerging contaminants: studies in northern Colorado, Environ. Sci. Tech. 40 (2006) 7445–7450.
- [4] X. Meng, F. Li, L. Yi, M.Y. Dieketseng, X. Wang, L. Zhou, G. Zheng, Free radicals removing extracellular polymeric substances to enhance the degradation of intracellular antibiotic resistance genes in multi-resistant *Pseudomonas Putida* by UV/H<sub>2</sub>O<sub>2</sub> and UV/peroxydisulfate disinfection processes, J. Hazard. Mater. 430 (2022), 128502.
- [5] B. Shao, Z. Liu, L. Tang, Y. Liu, Q. Liang, T. Wu, Y. Pan, X. Zhang, X. Tian, J. Yu, The effects of biochar on antibiotic resistance genes (ARGs) removal during different environmental governance processes: A review, J. Hazard. Mater. 435 (2022), 129067.
- [6] C.S. Zhou, J.W. Wu, L.L. Dong, B.F. Liu, D.F. Xing, S.S. Yang, X.K. Wu, Q. Wang, J. N. Fan, L.P. Feng, G.L. Cao, Removal of antibiotic resistant bacteria and antibiotic resistance genes in wastewater effluent by UV-activated persulfate, J. Hazard. Mater. 388 (2020), 122070.
- [7] B. Yang, Q. Wen, Z. Chen, Y. Tang, Potassium ferrate combined with ultrafiltration for treating secondary effluent: Efficient removal of antibiotic resistance genes and membrane fouling alleviation, Water Res. 217 (2022), 118374.
- [8] C.D. Spellman Jr, J.E. Goodwill, Pilot-scale evaluation of sulfite-activated ferrate for water reuse applications, Water Res. 229 (2023), 119400.
- [9] S. Sun, S. Pang, J. Jiang, J. Ma, Z. Huang, J. Zhang, Y. Liu, C. Xu, Q. Liu, Y. Yuan, The combination of ferrate (VI) and sulfite as a novel advanced oxidation process for enhanced degradation of organic contaminants, Chem. Eng. J. 333 (2018) 11–19.
- [10] J. Wang, J. Kim, D.C. Ashley, V.K. Sharma, C.H. Huang, Peracetic acid enhances micropollutant degradation by ferrate (VI) through promotion of electron transfer efficiency, Environ. Sci. Tech. 56 (2022) 11683–11693.
- [11] N. Wang, W. Li, T. Du, M. Li, Q. Zhao, M. Li, Q. Zhao, M. Li, H. Wang, L. Song, Degradation of iohexol by potassium ferrate in synthetic water and wastewater effluent: Influencing factors, kinetics, and potential intermediates, Environ. Technol. Innov. 29 (2023), 103026.
- [12] T. Yang, S. Wu, J. Mai, L. Chen, C. Huang, G. Zeng, Y. Wu, M. Zhu, Y. Huang, Z. Mo, L. Guo, J. Jia, J. Ma, Activation of ferrate (VI) by sulfite for effectively degrading iodinated contrast media and synchronously controlling I-DBPs formation, Chem. Eng. J. 442 (2022), 136011.
- [13] X. Guan, Y. Sun, H. Dong, Advanced oxidation technology for water pollution control, Chinese Science Publishing House, Beijing, 2023 in Chinese.
- [14] V.K. Sharma, Oxidation of inorganic contaminants by ferrates (VI, V, and IV)kinetics and mechanisms: A review, J. Environ. Manage. 92 (2011) 1051–1073.
- [15] B. Shao, H. Dong, L. Feng, J. Qiao, X. Guan, Influence of [sulfite]/[Fe (VI)] molar ratio on the active oxidants generation in Fe (VI)/sulfite process, J. Hazard. Mater. 384 (2020), 121303.
- [16] D. Zhou, H. Zhang, L. Chen, Sulfur-replaced Fenton systems: can sulfate radical substitute hydroxyl radical for advanced oxidation technologies? J. Chem. Technol. Biotechnol. 90 (2015) 775–779.
- [17] Y. Hu, T. Zhang, L. Jiang, S. Yao, H. Ye, K. Lin, C. Cui, Removal of sulfonamide antibiotic resistant bacterial and intracellular antibiotic resistance genes by UVCactivated peroxymonosulfate, Chem. Eng. J. 368 (2019) 888–895.
- [18] Y. Zhou, J. Fang, Z. Davood, J. Han, D. Qu, Fitness cost and compensation mechanism of sulfonamide resistance genes (sul1, sul2, and sul3) in Escherichia coli, Environ. Microbiol. 23 (2021) 7538–7549.
- [19] B. Zhong, X. An, W. An, X. Xiao, H. Li, X. Xia, Q. Zhang, Effect of bioaugmentation on lignocellulose degradation and antibiotic resistance genes removal during biogas residues composting, Bioresour. Technol. 340 (2021), 125742.
- [20] D.Q. Huang, Q. Wu, J.H. Yang, Y. Jiang, Z.Y. Li, N.S. Fan, R.C. Jin, Deciphering endogenous and exogenous regulations of anammox consortia in responding to lincomycin by multiomics: quorum sensing and CRISPR system, Water Res. 239 (2023), 120061.

- [21] Q. Wu, X. Wang, H.Y. Li, D.Q. Huang, B.C. Huang, R.C. Jin, N.S. Fan, Perturbation and mechanism of non-antibiotic drug in regulating resistome and metabolome of anammox consortia: An overlooked and underrated cause of multiresistance, Chem. Eng. J. 475 (2023), 146325.
- [22] Y. Liu, W. Smith, M. Gebrewold, X. Wang, S.L. Simpson, A. Bivins, W. Ahmed, Comparison of concentration and extraction workflows for qPCR quantification of *intl1* and *vanA* in untreated wastewater, Sci. Total Environ. 903 (2023), 166442.
- [23] H.C. Su, G.G. Ying, R. Tao, R.Q. Zhang, J.L. Zhao, Y.S. Liu, Class 1 and 2 integrons, sul resistance genes and antibiotic resistance in *Escherichia coli* isolated from Dongjiang River, South China, Environ. Pollut. 169 (2012) 42–49.
- [24] M. Zhao, J. Bai, X. Bu, Y. Tang, W. Han, D. Li, L. Wang, Y. Yang, Y. Xu, Microwaveassisted aqueous two-phase extraction of phenolic compounds from Ribes nigrum L. and its antibacterial effect on foodborne pathogens, Food Control 119 (2021), 107449.
- [25] B.J. Ni, X. Yan, X. Dai, Z. Liu, W. Wei, S.L. Wu, Q. Xu, J. Sun, Ferrate effectively removes antibiotic resistance genes from wastewater through combined effect of microbial DNA damage and coagulation, Water Res. 185 (2020), 116273.
- [26] S. Kaur, V. Saini, R. Dalal, UV-Visible spectroscopic effect on Haemoglobin & DNA degradation: A forensic approach, Forensic Sci. Int. 307 (2020), 110078.
- [27] Z. Zhang, X. Li, C. Zhang, S. Lu, Y. Xi, Y. Huang, Z. Xue, T. Yang, Combining ferrate (VI) with thiosulfate to oxidize chloramphenicol: Influencing factors and degradation mechanism, J. Environ. Chem. Eng. 9 (2021), 104625.
- [28] Z. Wang, S. Yuan, Z. Deng, Y. Wang, S. Deng, Y. Song, C. Sun, N. Bu, X. Wang, Evaluating responses of nitrification and denitrification to the co-selective pressure of divalent zinc and tetracycline based on resistance genes changes, Bioresour. Technol. 314 (2020), 123769.
- [29] L. Cheng, Y. Mao, L. Jiang, R. Ma, J. Ma, Y. Zhuo, Q. Shen, C. Liu, L. Zhao, X. Xu, F. Ji, Mn (VII) enhanced by CaSO3 to remove trace organic pollutants in high salt organic wastewater: Further enhancement of salinity, Chemosphere 334 (2023), 138964.
- [30] Y. Zhao, Y. Zhao, Z. Zhao, X. Ma, Y. Cai, Solidification performances of contaminants by red mud-based cementitious paste filling material and leaching behavior of contaminants in different pH and redox potential environments, Water Sci. Technol. 85 (2022) 731–745.
- [31] M. Roginskaya, R. Mohseni, D. Ampadu-Boateng, Y. Razskazovskiy, DNA damage by the sulfate radical anion: hydrogen abstraction from the sugar moiety versus one-electron oxidation of guanine, Free Radic. Res. 50 (2016) 756–766.
- [32] Y. Mao, Y. Wu, X. Lu, C. Sun, C. Li, Y. Chen, L. Jiang, Q. Shen, Q. Zhang, C. Liu, J. Liang, H. Dong, L. Huang, F. Ji, Fe3+-enhanced zero valen tiron/peroxymonosulfate (ZVI/PMS) process for the transformation of iopamidol during coagulation and reduction of iodinated disinfection by-products, Chem. Eng. J. 453 (2023), 139723.
- [33] Y. Cao, S. Jiang, X. Kang, H. Zhang, Q. Zhang, L. Wang, Enhancing degradation of atrazine by Fe-phenol modified biochar/ferrate (VI) under alkaline conditions: Analysis of the mechanism and intermediate products, Chemosphere 285 (2021), 131399.
- [34] B. Suyamud, J. Lohwacharin, Y. Yang, V.K. Sharma, Antibiotic resistant bacteria and genes in shrimp aquaculture water: Identification and removal by ferrate (VI), J. Hazard. Mater. 420 (2021), 126572.
- [35] N. Li, G.P. Sheng, Y.Z. Lu, R.J. Zeng, H.Q. Yu, Removal of antibiotic resistance genes from wastewater treatment plant effluent by coagulation, Water Res. 111 (2017) 204–212.
- [36] M. Li, Z. An, Y. Huo, J. Jiang, Y. Zhou, H. Cao, Z. Jin, J. Xie, M. He, Individual and combined degradation of N-heterocyclic compounds under sulfate radical-based advanced oxidation processes, Chem. Eng. J. 442 (2022), 136316.
- [37] K. Qin, L. Wei, J. Li, B. Lai, F. Zhu, H. Yu, Q. Zhao, K. Wang, A review of ARGs in WWTPs: Sources, stressors and elimination, Chin. Chem. Lett. 31 (2020) 2603–2613.
- [38] C. Zhang, X. Zhao, C. Wang, I. Hakizimana, J.C. Crittenden, A.A. Laghari, Electrochemical flow-through disinfection reduces antibiotic resistance genes and horizontal transfer risk across bacterial species, Water Res. 212 (2022), 118090.
- [39] M. Gmurek, E. Borowska, T. Schwartz, H. Horn, Does light-based tertiary treatment prevent the spread of antibiotic resistance genes? Performance, regrowth and future direction, Sci. Total Environ. 817 (2022), 153001.
- [40] Y.D. Chen, X. Duan, X. Zhou, R. Wang, S. Wang, N.Q. Ren, S.H. Ho, Advanced oxidation processes for water disinfection: Features, mechanisms and prospects, Chem. Eng. J. 409 (2021), 128207.
- [41] P. Chen, J. Jiang, S. Zhang, X. Wang, X. Guo, F. Li, Enzymatic response and antibiotic resistance gene regulation by microbial fuel cells to resist sulfamethoxazole, Chemosphere 325 (2023), 138410.
- [42] Z. Xiang, Q. Xue, P. Gao, H. Yu, M. Wu, Z. Zhao, Y. Li, S. Wang, J. Zhang, L. Dai, Antioxidant peptides from edible aquatic animals: Preparation method, mechanism of action, and structure-activity relationships, Food Chem. 404 (2023), 134701.
- [43] E.H. Joo, Y.R. Kim, N. Kim, J.E. Jung, S.H. Han, H.Y. Cho, Effect of endogenic and exogenic oxidative stress triggers on adverse pregnancy outcomes: preeclampsia, fetal growth restriction, gestational diabetes mellitus and preterm birth, Int. J. Mol. Sci. 22 (2021) 10122.
- [44] Z. Deng, Z. Wang, P. Zhang, P. Xia, K. Ma, D. Zhang, L. Wang, Y. Yang, Y. Wang, S. Chen, S. Deng, Effects of divalent copper on microbial community, enzymatic activity and functional genes associated with nitrification and denitrification at tetracycline stress, Enzyme Microb. Technol. 126 (2019) 62–68.
- [45] Y. Wang, Z. Wang, H. Yang, S. Yuan, Y. Song, L. Wang, L. Zhang, Acute impacts of mixed heavy metals and diclofenac on sludge activity and enzyme activity involved with biological nitrogen removal, Environ. Sci. Water Res. Technol. 7 (2021) 1852–1860.

10

# C. Niu et al.

- [46] Q. Ping, T. Yan, L. Wang, Y. Li, Y. Lin, Insight into using a novel ultraviolet/ peracetic acid combination disinfection process to simultaneously remove antibiotics and antibiotic resistance genes in wastewater: Mechanism and comparison with conventional processes, Water Res. 210 (2022), 118019.
- [47] C. Wang, Y. Wang, S. Yan, Y. Li, P. Zhang, P. Ren, M. Wang, S. Kuang, Biocharamended composting of lincomycin fermentation dregs promoted microbial metabolism and reduced antibiotic resistance genes, Bioresour. Technol. 367 (2023), 128253.
- [48] G. Azulay, A. Pasechnek, O. Stadnyuk, S. Ran-Sapir, A.M. Fleisacher, I. Borovok, N. Sigal, A.A. Herskovits, A dual-function phage regulator controls the response of cohabiting phage elements via regulation of the bacterial SOS response, Cell Rep. 39 (2022), 110723.
- [49] S. Fu, Z. Li, L. Xiao, W. Hu, L. Zhang, B. Xie, Q. Zhou, J. He, Y. Qiu, M. Wen, Y. Peng, J. Gao, R. Tan, Y. Deng, L. Wen, L.Q. Sun, Glutamine synthetase promotes radiation resistance via facilitating nucleotide metabolism and subsequent DNA damage repair, Cell Rep. 28 (2019) 1136–1143.